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applied ® eld in a nematic droplet
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Ibaraki-ken, 319-12, Japan
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School of Mathematics and Statistics, The University of She� eld, She� eld,
S3 7HF, England

and D. A. DUNMUR
Department of Chemistry, The University of She� eld, She� eld, S3 7HF, England

(Received 1 July 1996 )

In this paper the director con® gurations and the free energies of a nematic droplet with a
surface normal anchoring condition are calculated numerically. For this surface anchoring, a
transition occurs between the radial and axial structures with respect to an applied ® eld. In
the calculation of the director con® gurations, the position of a disclination has been ® xed.
Comparing the free energies for di� erent disclinations, the stable position which gives the
minimum free energy is found. In calculating the free energy of a droplet, it is assumed that
the free energy density of the nematic phase does not exceed the isotropic free energy density,
so that the large distortion in the vicinity of the disclination causes a nematic± isotropic
transition and the free energy density of the disclination core becomes equal to the isotropic
free energy density. The director con® guration in a droplet is calculated as a function of an
applied ® eld for di� erent isotropic free energy densities, elastic constant ratios and droplet
shapes. The relation between the radial± axial structure transition and these factors are clari® ed.

1. Introduction to an applied ® eld. They found that the radial structure
with a point disclination at the centre of the droplet isThe change of director con® gurations with respect to

an applied ® eld in a nematic droplet is a matter of recent stable without a ® eld. With increasing an applied ® eld,
the disclination ring expands toward the surface and theinterest [1 ± 6] in the context of polymer dispersed liquid

crystals (PDLCs) [7 ± 10]. Such materials containing axial structure with an equatorial disclination ring is
stable at high ® eld.nematic droplets are suitable for realising high brightness

displays because they do not need any polarizers, unlike Kralj and Zumer [4] have analysed the radial± axial
structural transition in a spherical droplet numerically.conventional liquid crystal displays. PDLCs consist of

dispersed nematic droplets containing liquid crystals in a They considered the director con® gurations with a point
disclination at the centre of the droplet, those withsurrounding polymer, and by applying a voltage, PDLCs

can be switched from a scattering state to a transparent a disclination ring on the equatorial plane and those
with an equatorial disclination ring on the surface andstate: this ability is especially suitable for projector

applications [11± 13]. discussed the stability of these structures. They also
discussed the dependencies of the structure on theIn a nematic droplet, the director con® guration

depends on the anchoring condition at the droplet ratio of elastic constants K33 /K11 , K24 /K11 , anchoring
strength, and external ® eld strength. Since the radial±surface. In this paper, homeotropic anchoring where the

directors prefer to align normal to the surface is assumed. axial structural transition is accompanied by the
expansion of the disclination ring, which has a high freeBondar et al. [3] observed experimentally the transition

in a droplet with a homeotropic anchoring with respect energy density, the free energy density of the disclination
is very important. In this paper it is assumed that the
core of the disclination is isotropic, and as an extension
to the work of Kralj and Zumer, the dependence of*Author for correspondence.
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194 S. Komura et al.

the radial± axial structural transition on the isotropic K13 and K24 are neglected. Kralj and Zumer [4] also
free energy density is discussed. Moreover the approach put K13=0 and found that K24 was only signi® cant for
is extended to an oblate droplet and the director weak anchoring. Then the distortion term is given by
con® guration in the oblate droplet is also considered.

The stable director con® guration was obtained in
fd=

1

2
K11 (V¯n)2+

1

2
K22 [n ¯ (VÖ n) ]2

the following way. Firstly the director con® guration for
the several possible positions of the disclination was
calculated by solving the Euler± Lagrange equations

+
1

2
K33 |n Ö (VÖ n) |2, (3 )

numerically. In this calculation it was assumed that the
director at the boundary surrounding the ® xed dis-
clination is given by solving the corresponding Euler± where K11 , K22 and K33 are the elastic constants of
Lagrange equation around the disclination. Secondly splay, twist and bend distortion, respectively, and the unit
the free energy in a droplet for each director con- vector n is the director of nematic liquid crystals. The
® guration was calculated with a ® xed disclination. Here elastic constants are functions of the order parameter
it was assumed that the free energy density of the and becomes zero in the isotropic phase. Here the
nematic phase does not exceed the isotropic free energy electric ® eld is considered as the external ® eld and fe is
density [4]. The large distortion in the vicinity of the given by [14, 15]
disclination causes a nematic± isotropic transition and
the free energy density in the core of the disclination

fe=Õ
1

2
e0De(n ¯ E )2, (4 )becomes equal to the isotropic free energy density.

By comparing each free energy, the stable director
con® guration can be found by minimizing the free

where De is the dielectric anisotropy of the liquid crystal,energy.
e0 is the dielectric constant of free space and E is theThe director con® gurations of a spherical and an
electric ® eld. Here it is assumed that the electric ® eld Eoblate droplet with homeotropic anchoring are calcu-
is constant in a droplet, which neglects the distortion oflated as a function of an applied electric ® eld. Here the
the ® eld due to the deformed director con® guration.electric ® eld is assumed to be constant in the droplet.
While this is a signi® cant assumption, inclusion of anThe e� ects of the following factors on the radial-axial
inhomogeneous ® eld would considerably complicate thestructure transition are discussed; (1) the di� erence
calculation. Furthermore it is not clear that it would bebetween the isotropic free energy density and the nematic
any closer to reality, since in the PDLC device inter-free energy density without distortion, (2) the elastic
droplet interactions are likely to distort the ® eld distri-constant ratio K33 /K11 , (3 ) the di� erence between the
bution just as much as intra-droplet inhomogeneities.oblate and spherical droplets.
The dielectric anisotropy of the liquid crystal De is a
function of the order parameter and becomes zero in

2. Theory the isotropic phase.
The director con® guration of a droplet is obtained by It is assumed that directors prefer to align normal to

the condition of minimizing the free energy of a droplet.
the surface. The surface energy term is given by [5]

The free energy of a droplet is de® ned as

fs=Õ
1

2
W 0 { (n ¯ s)2 Õ 1}, (5 )F= P P Pv

fb dV + P Ps
fs dS, (1 )

where W 0 is the anchoring strength and s is the surfacewhere fb and fs are the free energy density of the bulk
normal unit vector.and the surface, respectively. The bulk free energy density

is the sum of the homogeneous term fn , the distortion In this paper, the droplet is treated as having
term fd and the external ® eld term fe [4, 5] so that rotational symmetry around the director of electric ® eld

E (see ® gure 1). Since we wish to consider both spherical
fb= fn + fd + fe . (2 ) and oblate droplets, it is convenient to use cylindrical

coordinates (r, w, z) in terms of which the equation ofThe homogeneous term means the free energy density
the surface takes the formof nematic phase without distortion and is a function of

the order parameter.
In this paper only strong anchoring is considered. A r

RB2

+A z

aRB2

=1. (6 )
Surface terms in the Frank elastic free energy including
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195Analysis of the structure in a nematic droplet

The conditions a =1 corresponds to a spherical droplet where
of radius R and a <1 to an oblate droplet.

Equation (1) now becomes
j=A K11

e0DeB1/2 1

E
(12 b)

F = P a
R

Õ a
R P

(R2Õ
(z/

a
)2)1/2

0 P
2 p

0

fb dwr dr dz

is the correlation length [14], and

+ P a
R

Õ a
R P

2 p

0

[ fs (r
2+ (z/a2 )2 )1/2]surf dw dz

fs /(K11 /R ) =
1

2A R

deB 1

r2+ (f/a2 )2

=2pK11 RC P a

Õ a
P

(1
Õ

(f/
a
)2)1/2

0

fb /(K11 /R2 )r dr df

Ö {r cos y Õ (f/a2 ) sin y}2 (13 a)

+ P a

Õ a

[ fs /(K11 /R ) (r2+ (f/a2)2 )1/2]surf dfD (7 ) where

with de=K11 /W 0 (13 b)

r =r/R, f= z/R. (8 ) is the extrapolation length [14]. In equations (11),
(12) and (13), y

r
and y

f
represent qy/qr and qy/qf,Here [ ]surf means that the contents in the bracket are

respectively.evaluated at the surface, and from equation (6) r and f
The stable director con® guration is found by mini-satisfy

mizing the free energy of a droplet given by equation (7).
This can be achieved by solving the correspondingr2+ (f/a)2=1. (9 )
Euler± Lagrange equation,

We limit our discussion to cases without twist
distortion and represent the director by

r
q fb

qy
Õ

q fb

qy
r

Õ r
q
qrA q fb

qy
rB Õ r

q
qfA q fb

qy
fB=0

n = sin ye
r
+cos ye

f
, (10)

(14)where e
r

and e
f

are the unit vectors of the cylindrical
coordinates and y (r, f) is the angle between the director

with the boundary conditionn and e
f

(see ® gure 1 (a) ). Inclusion of a twist distortion
would require the introduction of an additional variable
and would have further complicated the computations.

r
q fb

qy
r

+ (f/a2)
q fb

qy
f

+
1

R

q fs

qy
(r2+ (f/a2)2 )1/2=0.

Using equations (3), (4 ), (5 ) and (10) gives

(15)
fd /(K11 /R2 ) =

1

2
(cos2 y +k3 sin2 y)y2

r
Derivations of equations (14) and (15) are given in

the appendix. Taking account of equations (2) and (9)
+

1

2
(sin2 y +k3 cos2 y)y2

f and substituting equations (11), (12) and (13) into
equations (14) and (15), we can obtain the following

Õ ( 1 Õ k3 )y
r
y

f
sin y cos y form of the Euler± Lagrange equation:

+
1

r
(y

r
cos y Õ y

f
sin y) sin y r (cos2 y +k3 sin2 y)y

rr
+r(sin2 y +k3 cos2 y)y

ff

Õ r ( 1 Õ k3 )y
r

y
f

cos 2y

+
1

2r2 sin2 y (11 a)
Õ

1

2
( 1 Õ k3 ) (y2

r
Õ y2

f
+2y

rf
) sin 2y

with

+ (cos2 y +k3 sin2 y)y
r
Õ

1

2
( 1 Õ k3 )y

f
sin 2y

k3=K33 /K11 , (11 b)

fe /(K11 /R2 ) =Õ
1

2A R

j B2

cos2 y , (12 a) Õ
1

2r
sin 2y Õ

1

2
rA R

j B2

sin 2y =0 (16)
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196 S. Komura et al.

and the boundary condition origin and take

n =cos ue
r
Õ sin ue

h
, (18)

rG (cos2 y +k3 sin2 y)y
r where r = r/R , e

r
and e

h
are the unit vectors of the

spherical coordinates and u(r, h) is the angle between
the director n and e

r
(see ® gure 1 (b) ). The distortion free

Õ
1

2
(1 Õ k3 )y

f
sin 2y+

1

2r
sin 2y H energy density fd is then given by

fd /(K11 /R2 )=
1

2Gu
r

sin u+
1

r
u
h

cos u+ (f/a2 )G (sin2 y +k3 cos2 y)y
f

+
1

r
(cot h sin u Õ 2 cos u) H2

Õ
1

2
(1 Õ k3 )y

r
sin 2y Õ

1

r
sin2 y H

+
1

2
k3Gu2

r
cos2 u+

1

r2 u2

h
sin2 u+

1

r
u
r

sin 2uÕ
1

2A R

deB 1

(r2+ (f/a2 )2 )1/2

Ö { (r2 Õ (f/a2 )2 ) sin 2y +2r(f/a2 ) cos 2y}=0.
Õ

2

r2 u
h

sin2 u Õ
1

r
u
r

u
h

sin 2u+
1

r2 sin2 u H.

(17)
(19)

Generally k3 and j are functions of the order para-
Here u

r
and u

h
represent qu/qr and qu/qh, respectively.meter which decreases in the vicinity of the disclination

The corresponding Euler± Lagrange equation is given bydue to the large distortion of the director con® guration
[6]. (sin2 u+k3 cos2 u)r2 sin hu

rr
+ (cos2 u+k3 sin2 u) sin hu

hhAs a ® rst approximation, we assume that k3 is con-
stant regardless of the order parameter. In this case Õ

1

2
(k3 Õ 1 ) sin h sin 2u(r2u2

r
Õ u2

h
)

equation (16) still depends on the order parameter
through j in the external ® eld term. However the Õ (k3 Õ 1 )r sin h(u

rh
sin 2u+u

r
u
h

cos 2u)
distortion terms are much larger than the external
® eld term in the vicinity of the disclination and the +G2 (sin2 u+k3 cos2 u) sin h
order parameter is constant out of this region. Therefore
the order parameter dependence is negligible in
equation (16). The director con® guration can be deter- Õ

1

2
(k3 Õ 1 ) cos h sin 2u Hru

rmined with a constant k3 regardless of the order
parameter.

In the numerical calculation of the director con- +G(cos2 u+k3 sin2 u) cos h Õ
1

2
(k3 Õ 1 ) sin h sin 2u Hu

h® gurations, the disclination is ® xed and the boundary
surrounding the disclination region is de® ned as the

Õ
1

2

1

sin h
sin 2u+sin h sin 2u Õ (1+k3 ) cos h sin2 u=0.disclination boundary. Here the distance from the dis-

clination to the boundary is negligible in comparison
(20)with the droplet radius. The directors on this boundary

are ® xed while solving equations (16) and (17) As r is very small on the disclination boundary, the
numerically. Their values are determined by solving the terms containing r are neglected and equation (20)
Euler± Lagrange equation corresponding to the vicinity approximated by
of the disclination where the external ® eld term fe is
negligible compared with the distortion term fd . The G (u)Gu

hh
sin2 h +

1

2
(u

h
Õ 1 ) sin 2h Hthree possible disclinations in a droplet with surface

normal anchoring are (1) the disclination point at the
centre of the droplet (at r=f=0 ) , (2 ) the circle dis- +

1

2

qG (u)

qu
(u

h
Õ 1 )u

h
sin2 h Õ

1

2
sin 2 (u Õ h)=0

clination ring on the equator plane of the droplet (at
0<r<1, f=0), (3 ) the circle disclination ring on the (21 a)
equator (at r=1, f=0).

withFor case (1), it is convenient to use the spherical
coordinates (r, h, w) with the point disclination at the G (u) =cos2 u +k3 sin2 u. (21 b)
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197Analysis of the structure in a nematic droplet

(a)

(c) (d)

(b)

Figure 1. (a) Schematic presentation of the director n in the cylindrical coordinates. (b) Schematic presentation of the director n
in the spherical coordinates. (c) and (d ): Schematic presentation of the director n in the cylindrical coordinates where the z ¾
axis is everywhere tangential to the disclination ring.

This di� erential equation is solved subject to the distortion free energy density is given by
conditions

fd /(k11 /R 2 ) =
1

2A 1

r
cos vÅ Õ vÅ

r
sin vÅ +

1

r
vÅ w

cos vÅ B2

u(h=0 ) =0, (22 a)

u(h=p/2 ) =0. (22 b)
+

1

2
k3A 1

r
sin vÅ +vÅ

r
cos vÅ +

1

r
vÅ w

sin vÅ B2

Equations (22 a) and (22 b) follow from the sym-
metry with respect to the Oxy plane and the z-axis (24)
in ® gure 1 (b), respectively. Obviously u=0 satis® es

Here vÅ
r

and vÅ w
represent, qvÅ /qr and qvÅ /qw, respectively.equations (21) and (22), and so u =0 is taken as the

The corresponding Euler± Lagrange equation in the® xed value on the disclination boundary for case (1).
cylindrical coordinates is given byThis corresponds to a zero-bend distortion.

For case (2) and (3), it is convenient to introduce (sin2 vÅ +k3 cos2 vÅ )r2vÅ
rr

+ (cos2 vÅ +k3 sin2 vÅ )vÅ wwlocal cylindrical coordinates (r, w, z) where the z axis is
everywhere tangential to the disclination ring and take Õ

1

2
(k3 Õ 1 ) sin 2vÅ (r2vÅ

2

r
Õ vÅ

2
w
)

n =cos vÅ e
r
+ sin vÅ e

w
, (23)

+ (k3 Õ 1 )r(vÅ
rw

sin 2vÅ +2vÅ
r

vÅ w
cos 2vÅ )

where r= r/R, e
r

and e
h

are the unit vectors of the
cylindrical coordinates and vÅ (r, w) is the angle between + (sin2 vÅ +k3 cos2 vÅ )rvÅ

r
Õ

1

2
(k3 Õ 1 ) sin 2vÅ =0.

the director n and e
r

(see ® gure 1 (c) and (d ) ). The O ¾ x ¾ y ¾
plane is always perpendicular to the O ¾ z ¾ direction. The (25)
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198 S. Komura et al.

As r is very small on the boundary, the terms con-
taining r are negligible. Therefore equation (25) can be
approximated by

G (vÅ )vÅ ww
+

1

2

qG (vÅ )

qvÅ
(vÅ

2
w
Õ 1 ) =0. (26)

The solution for case (2) is obtained by solving
equation (26) numerically subject to the conditions,

vÅ (w=0 ) =0, (27 a)

vÅ (w=2p)=Õ p. (27 b)

These conditions follow from the symmetry with respect
to the O ¾ x ¾ z ¾ plane in ® gures 1 (c) and (d ) and the strength
of the disclination which is 1/2.

For case (3) equation (26) is solved subject to the
conditions,

vÅ (w=p/2)=Õ p/2, (28 a)

vÅ (w=p)=Õ p/2. (28 b)

These conditions follow from the symmetry with
respect to the O ¾ x ¾ z ¾ plane in ® gures 1 (c) and (d ), and
the surface normal boundary condition at the droplet
surface. In this case vÅ =Õ p/2 satis® es equations (26)
and (28), and so this is used as the ® xed value on the
boundary surrounding the disclination ring on the
surface. This corresponds to a zero-splay distortion.

The director con® gurations for the ® xed disclinations
in a droplet outside the disclination region are obtained
by solving equation (16) with the boundary condition
equation (17) and the ® xed values on the disclination
boundary.

In order to ® nd the stable state, the free energies of a
droplet are calculated for each director con® guration
which are obtained with respect to the ® xed disclination.
By comparing each free energy, the stable director

Figure 2. (a) Free energy of a spherical droplet as a function
of rd for R /j=0 to 5 0́ with K33 /K11=1 0́, R /de=100
and f i± n /(K /R2 )=104. (b) Director con® gurations of a
spherical droplet for R /j=0, 2 5́, 5 0́ with K33 /K11=1 0́,
R /de =100 and f i± n /(K/R2 )=104.

Figure 3. (a) Free energy of a spherical droplet as a function
of rd for R /j=0 to 5 0́ with K33 /K11=1 0́, R /de=100
and f i± n /(K /R2 )=102. (b) Director con® gurations of a
spherical droplet for R /j=0, 2 5́, 5 0́ with K33 /K11=1 0́,
R /de =100 and f i± n /(K /R2 )=102.

Figure 4. (a) Free energy of a spherical droplet as a function
of rd for R /j=0 to 5 0́ with K33 /K11=1 0́, R /de=100
and f i± n /(K /R2 )=106. (b) Director con® gurations of a

(a)

(b)
spherical droplet for R /j=0, 2 5́, 5 0́ with K33 /K11=1 0́,

Figure 2.
R /de =100 and f i± n /(K /R2 )=106.
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199Analysis of the structure in a nematic droplet

(a)

(b)

(a)

(b)

Figure 4.Figure 3.
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200 S. Komura et al.

con® guration can be found by minimizing the free energy
of a droplet. In the calculation of the free energy the
order parameter is assumed to be constant in the droplet
except in the vicinity of the disclination. The free energy
density of the nematic phase cannot exceed the free
energy density of the isotropic phase f i , so that the large
distortion term in the vicinity of the disclination causes
the nematic± isotropic transition and the order parameter
becomes zero. In this region the free energy density is
de® ned to be equal to f i .

Based on the Landau± de Gennes theory, the di� erence
between the isotropic free energy density and the nematic
free energy density without distortion can be written in
terms of the order parameter S [14] as

f i Õ fn =Õ
1

2
a (T Õ T *

c )S2+
1

3
bS 3 Õ

1

4
cS4. (29)

By using the values of a common nematic liquid crystal
5CB [a =0 1́319 Ö 106 Jm Õ 3 K Õ 1, b =1´836 Ö 106 Jm Õ 3,
c=4 0́50 Ö 106 Jm Õ 3] and S =0 6́, T Õ T *

c =Õ 10 K,
f i Õ fn becomes of the order of 105. Taking the radius
of a droplet R =1 mm and a typical elastic constant to
be 10 Õ 11 N, the dimensionless parameter corresponding
to the di� erence between an isotropic and a nematic
free energy density, ( f i Õ fn )/(K /R2 ) = f i± n /(K/R 2 ) with
K = (K11 +K33 )/2 , becomes of the order of 104. We use
f i± n /(K/R 2 ) =104 as a typical value in the following
discussion.

The numerical calculation of the free energies of a
droplet are performed by employing the following pro-
cedure. The droplet is subdivided into a mesh, and the
directors at each mesh point are determined numerically
by means of ® nite di� erence solutions of equation (16)
subject to the boundary condition equation (17) and the
® xed boundary conditions on the disclination boundary.
The Newton± Raphson method is employed to solve the
resulting system of non-linear ® nite di� erence equations.
Then each mesh is subdivided into a ® ner mesh and the
initial estimates of the directors at each mesh point in
the ® ner mesh are determined by interpolation from the
calculated results for the coarser mesh. These estimates
are used to obtain more accurate approximation of the
free energy densities at each point within the ® ner mesh.
If the free energy density given by equation (2) exceeds
the de® ned isotropic free energy density, then the former
is reset to be the same as the latter. In these calculations,
the results depend on the mesh size. The process of mesh
re® nement is continued until there is negligible change

Figure 5. (a) Free energy of a spherical droplet as a function
of rd for R /j=0 to 5 0́ with K33 /K11=0 5́, R /de=100
and f i± n /(K /R2 )=104. (b) Director con® gurations of a

(a)

(b)
spherical droplet for R /j=0, 2 5́, 5 0́ with K33 /K11=0 5́,
R /de =100 and f i± n /(K /R2 )=104
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201Analysis of the structure in a nematic droplet

in the total free energy of the droplet as the mesh size is
further reduced. The accuracy of the numerical solution
of equation (16) and the calculated free energy of the
droplet are improved by means of re® nement of the
mesh size which is initially used in solving equation (16).
Details of the ® nite di� erence schemes approximating
equations (16) and (17), together with the Newton±
Raphson procedure, and the procedure for obtaining the
free energy of the droplet will be presented elsewhere
[16].

3. Results

In the following discussion, r̀adial structure’ is used
for the structure with the equatorial disclination ring
near the centre of the droplet as well as the structure
with the point disclination at the centre. In the same
way, àxial structure’ is used for the structure with the
disclination ring apart from the centre as well as the
structure with the disclination ring on the surface. Here
rd is de® ned as the distance from the centre of a droplet
to the equatorial disclination ring, i.e. the radius of the
disclination ring.

Figure 2 (a) shows the free energy of a droplet as a
function of rd for R /j=0 to 5 with a =1 (spherical
droplet), k3=1, R /de=100 and f i± n /(K/R 2 ) =104. R

is the radius of a droplet and k = (K11+K33 )/2 . The
dimensionless parameter R /de=100 corresponds to the
strong anchoring strength. The value of rd which gives
the minimum value of the free energy corresponds to
the radius of the disclination ring in the stable state.
Figure 2 (b) shows the stable director con® guration
which gives the minimum free energy for R /j=0, 2 5́, 5.
The disclination ring exists close to the centre of the
droplet for the low applied ® eld R /j. With increasing
the ® eld, the disclination ring expands outward and it
exists close to the surface for the high applied ® eld, i.e.
the radial to axial structure transition occurs.

Figures 3 (a) and 4 (a) show the free energy of a droplet
with f i± n /(K/R 2 ) =102 and f i± n /(K/R 2 )=106, respectively.
The other parameters are the same as those in ® gure 2.
Figures 3 (b) and 4 (b) show the stable director con-
® gurations corresponding to ® gures 3 (a) and 4 (a),
respectively. The case f i± n /(K/R 2 ) =102 corresponds to
a smaller droplet (~0 1́ mm) or higher temperature and
the case f i± n /(K/R 2 ) =106 to a larger droplet (~10 mm).
When f i± n /(K/R 2 ) is small (=102 ) , the minimum value
of the free energy occurs at the large value of rd regardless
of the applied ® eld, i.e. the axial structure is stable. On

Figure 6. (a) Free energy of a spherical droplet as a function
of rd for R /j=0 to 5 0́ with K33 /K11=2 0́, R /de=100
and f i± n /(K /R2 )=104. (b) Director con® gurations of a

(a)

(b)
spherical droplet for R /j=0, 2 5́, 5 0́ with K33 /K11=2 0́,
R /de =100 and f i± n /(K /R2 )=104.
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202 S. Komura et al.

the other hand, when f i± n /(K/R 2 ) is large (=106 ), the
free energy increases rapidly with increasing rd , so that
the radial structure is stable. In our assumption the
disclination ring consists of an isotropic core which has
the isotropic free energy density. The length of the
disclination ring increases with increasing rd . Therefore
if the isotropic free energy density is large, the free
energy associated with the disclination ring becomes
large rapidly with increasing rd and the total free energy
of a droplet becomes very large. In this case the point
disclination is still stable at the high applied ® eld
R /j=5 although there is a large distortion in the
director con® guration as is shown in ® gure 4 (b).

Figures 5 (a) and 6 (a) show the free energy of a droplet
when a bend elastic constant is smaller than a splay
elastic constant, K33 /K11 =k3=0´5 and larger than it,
K33 /K11 =k3=2´0, respectively. The other parameters
are the same as those in ® gure 2. Figures 5 (b) and 6 (b)
show the stable director con® gurations corresponding
to ® gures 5 (a) and 6 (a), respectively. When K33 is smaller
than K11 , the axial structure is stable. On the other
hand, if K33 is larger than K11 , the point disclination
exists at the centre of a droplet with the small applied
® eld. However with increasing the ® eld, the point dis-
clination becomes a disclination ring and expands
suddenly toward the surface at the critical applied ® eld;
there is a ® rst-order transition from the radial to axial
structure. The stability of the radial structure with large
bend elastic constant can be explained as follows. The
transition from the radial to the axial structure is accom-
panied by the bend distortion and the large bend elastic
constant prevents this distortion: the radial structure is
stable in this case.

Figure 7 (a) shows the free energy of an oblate droplet,
i.e. a =0 5́. The other parameters are the same as those
in ® gure 2. Figure 7 (b) shows the stable director con-
® gurations corresponding to ® gure 7 (a). In this case the
axial structure is stable regardless of the applied ® eld.
The director con® gurations show almost no change with

(a)

(b)

Figure 7. (a) Free energy of an oblate droplet (a=0 5́ ) asrespect to the applied ® eld as is shown in ® gure 7 (b).
a function of rd for R /j=0 to 5 0́ with K33 /K11=1 0́,
R /de=100 and f i± n /(K /R2 )=104. (b) Director con® gura-

4. Conclusions
tions of an oblate droplet (a =0 5́) for R /j=0, 2 5́ 5 0́

The radial ± axial structure transitions of a spherical with K33 /K11=1 0́, R /de=100 and f i± n /(K /R2 )=104.
and oblate droplet with a surface normal anchoring
condition have been calculated with the following
assumptions. (1) The ratio of elastic constants, K33 /K11 tropic free energy density and the nematic free energy

density without distortion, f i± n , is large, the radialis constant in a droplet even in the vicinity of the
disclination. (2) Large distortions around the dis- structure is stable. On the other hand, when f i± n is small,

the axial structure is stable. (3) When K33 is larger thanclination cause the nematic± isotropic phase transition,
so that the disclination core is isotropic. K11 , the radial structure is stable and the 1st order

transition occurs from the radial structure to the axialThe following results were obtained from these calcu-
lations: (1) The radial structure is stable for a low structure with increasing applied ® eld. On the other

hand, when K33 is smaller than K11 , the axial structureapplied ® eld and the axial structure is stable for a high
applied ® eld. (2) When the di� erence between the iso- is stable. (4 ) In an oblate droplet, the axial structure is
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203Analysis of the structure in a nematic droplet

stable and the director con® gurations show almost no In order to achieve dF=0 regardless of dy, the
following equations must be satis® ed:change with respect to the applied ® eld.

Appendix r
q fb

qy
Õ

q fb

qy
r

Õ r
q

qrAq fb

qy
rB Õ r

q
qfAq fÃ b

qy
fB=0 (14)

The Euler ± Lagrange equations (14) and (15) are
derived as follows. From equation (7) the variation of

r
q fb

qy
r

+ (f/a2 )
q fb

qy
f

+
1

R

q fs

qy
(r2+ (f/a2 )2 )1/2=0. (15)the free energy dF due to dy is represented by

dF=2pR 3 P a

Õ a
P

1 Õ (f/a)2

0
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Equation (A1) is represented in the following form after
some arrangements:

dF =2pR3 P a

Õ a
P
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